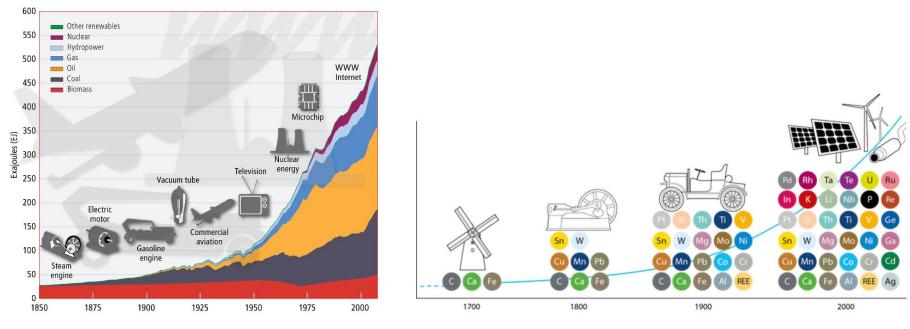
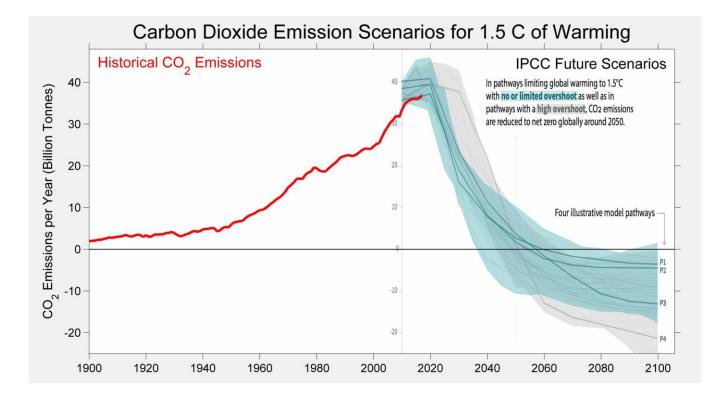
The Critical Mineral Foundations of the Energy Transition

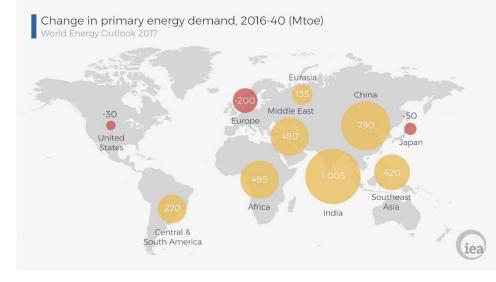

Peru June 9, 2021

Morgan D. Bazilian, Ph.D. Director, The Payne Institute, and Professor of Public Policy

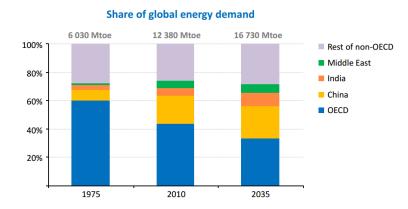
The Payne Institute for Public Policy



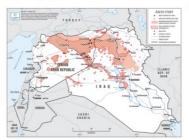
Of non-linear (upward) curves...



IIASA, Nakicenovi, Zepf, 2014c


....and downward

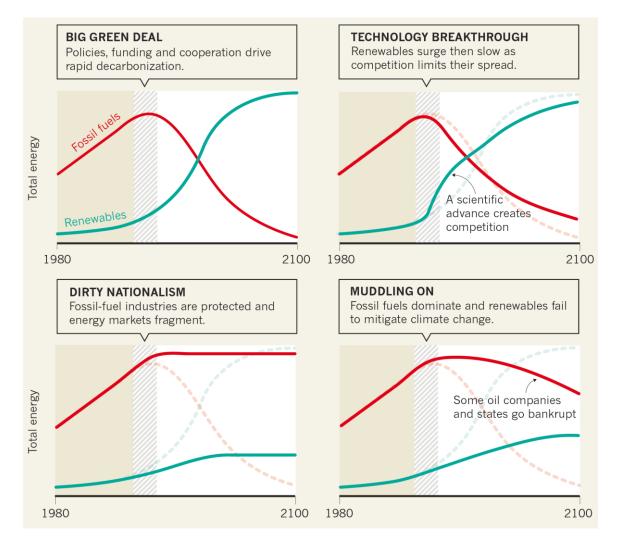
The energy transition is largely a developing country story



New ways to monitor the transition

Figure 1: Iraq and Syria Oil Production, Fields, and Daesh Control, March 2016

TankerTrackers.com @ @TankerTrackers - Mar 7 KUDOS has now arrived at the KRG berth in the port of Ceyhan, Turkey. She last departed Ceyhan on December 11th with 424K barrels to Croatia. Was only half full.#OOTT



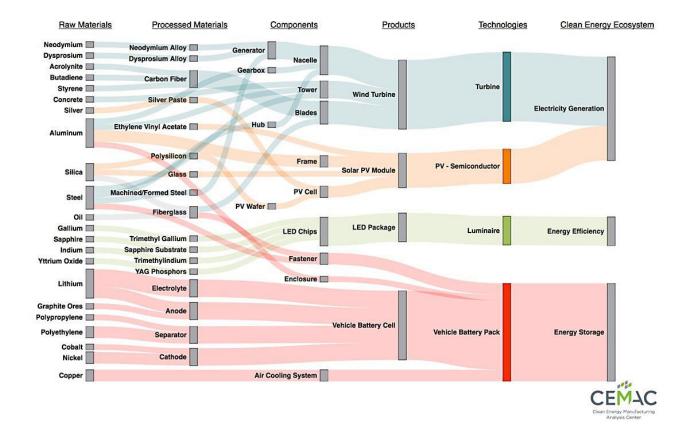
Geopolitical contours

While climate change impacts are being well-monitored, less so are other energy-related considerations:

- **1. Natural Gas** Accelerating trade through new international pipelines or liquefied natural gas (LNG)
- 2. Cybersecurity Growing importance with rise of interconnected systems and new forms of metering & system operation
- **3. Minerals** Conflict over minerals due to changes in technology and deployment in large numbers
- 4. Grids More regional interconnections in electricity grids from the Belt and Road to East Africa
- 5. Inequality Energy poverty and demand for reliable & affordable energy services to billions of people and businesses

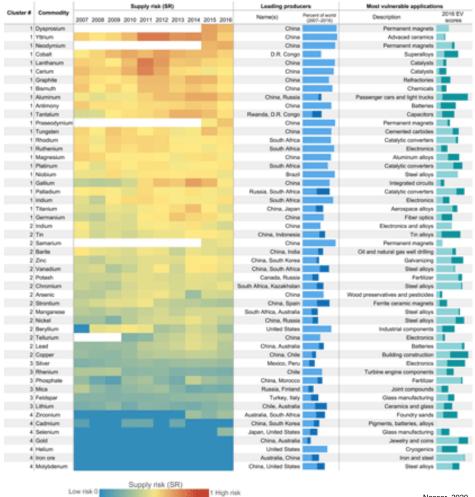
Global energy transition: four alternative futures

GET drivers:


- Policy
- National politics
- Technology
- Markets

Source: Goldthau, Bazilian et al, Nature 2019

Key takeaways from scenarios


- A zero-carbon world does not do away with zero-sum games.
 It produces different ones.
- Global win-win is but one plausible outcome.
- The pace of change matters.
- Some pathways may not be politically palatable to all.
- \rightarrow Acknowledge abating carbon creates losers & prepare for it
- \rightarrow Shift attention from goals to pathways
- \rightarrow Draw lessons from past and parallel experiences

Clean energy technologies and minerals

The Payne Institute for Public Policy

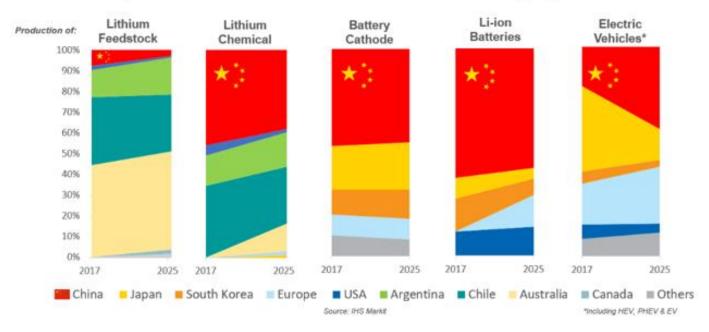
Defining criticality

Other Countries....

Table 1: Table of critical minerals in Australia

	Critical Mineral	U.S. list ^s	E.U. list ^e	Japan list7	Australia's Geological Potential®	Australia's Economic Demonstrated Resource ⁹	Australia's Production	Global Production	Market Value (Global) (US\$m) ¹⁰
1	Antimony	1	1	1	Moderate	138 kt	5.5 kt	150 kt	\$185.2
2	Beryllium	1	1		Moderate	-	-	230 t	\$918.6 ¹¹
3	Bismuth	1	4		Moderate	-	-	14 kt	\$69.2
4	Chromium	1		1	High	-	-	31 000 kt	\$4,705.3
5	Cobalt	1	1	1	High	1221 kt	5 kt	110 kt	\$541.8
6	Gallium	1	1	1	High	-	-	495 t	\$918.6 ⁿ
7	Germanium	1	1	1	High	-	-	134 t	\$918.6 ⁿ
8	Graphite	1	1	1	Moderate	7140 kt	0	1200 kt	\$1,076.1
9	Hafnium	1	4		High	756 kt	-	-	\$918.6 ⁿ
10	Helium	1	1		Moderate	-	4 hm=	160 hm3	\$591.0
n	Indium	1	1	1	High	-	-	0.72 kt	\$918.6 ⁿ
12	Lithium	1		1	High	2803 kt	14.4 kt	43 kt	\$1,430.6
13	Magnesium	1	1	1	Moderate	-	0	1100 kt	\$716.4
14	Manganese	4		1	High	231 000 kt	3200 kt	16 000 kt	\$5,443.7
15	Niobium	1		1	High	216 kt	-	64 kt	\$1,709.52
16	Platinum-group elements	1	1	4	High	24.9 t	2.6 t	200 kt	\$19,316.6
17	Rare-earth elements	1	1	1	High	3270 kt	14 kt	130 kt	\$415.4 ¹³
18	Rhenium	1		1	Moderate	-	-	52 kt	\$918.6 ⁿ
19	Scandium	1	1		High	-	-	-	_11
20	Tantalum	1	1	1	High	55.4 kt	-	1.3 kt	\$1,552.9
21	Tîtanium	1		1	High	Ilmenite:	Ilmenite:	Ilmenite:	\$1,609.9
						276 500 kt	1400 kt	6700 kt	
						Rutile: 32 900 kt	Rutile: 300 kt	Rutile: 750 kt	
22	Tungsten	1	1	1	Moderate	386 kt	0.11 kt	95 kt	\$164.0
23	Vanadium	1	1	1	Moderate	3965 kt	0	80 kt	\$1,709.52
24	Zirconium	1		1	High	52 662 kt	600 kt	1600 kt	\$1,003.4

Australian Government, 2019,


- **The United States** lists 35 minerals and commodities as critical to their economic and national security.
- The European Union lists 27 raw materials as critical due to risks of supply shortage and their impacts on the economy being higher than those of most of the other raw materials.
- o The Japanese report that identified the 31 critical

minerals

It's the supply chain

Who Really Controls the Lithium-ion Batteries Supply Chain?

Georgetown Journal of International Affairs

ABOUT US CURRENT ISSUE LATEST ARTICLES SUBMISSIONS CURRENT STAFF BUY PRINT CONTACT US

Q

Table 2		
Cobalt production and reserves (metric tons)	(Drexhage et al.,	2017 based on USGS,
2016).		

Country	Mine production	Reserves	
Congo (Kinshasa)	63,000	3,400,000	
Australia	6000	1,100,000	
Cuba	4200	500,000	
Zambia	2800	270,000	
Philippines	4600	250,000	
Russia	6300	250,000	
Canada	6300	240,000	
New Caledonia	3300	200,000	
Madagascar	3600	130,000	
China	7200	80,000	
Brazil	2600	78,000	
South Africa	2800	31,000	
Other countries	7700	633,000	
Total	120,400	7,162,000	

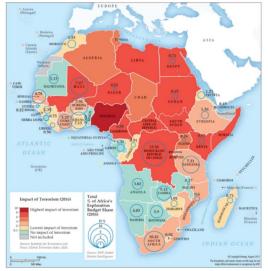
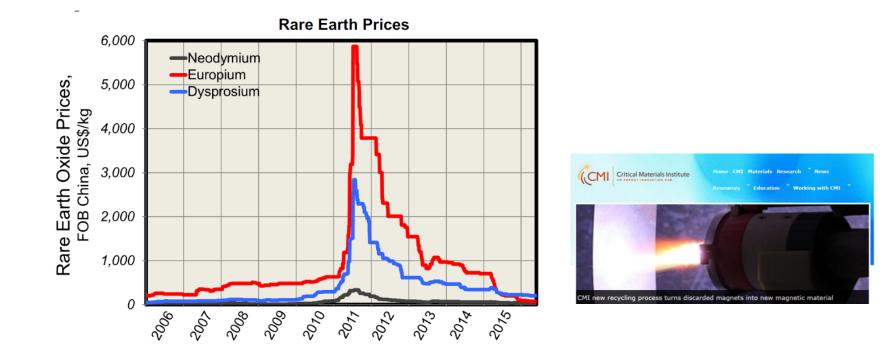
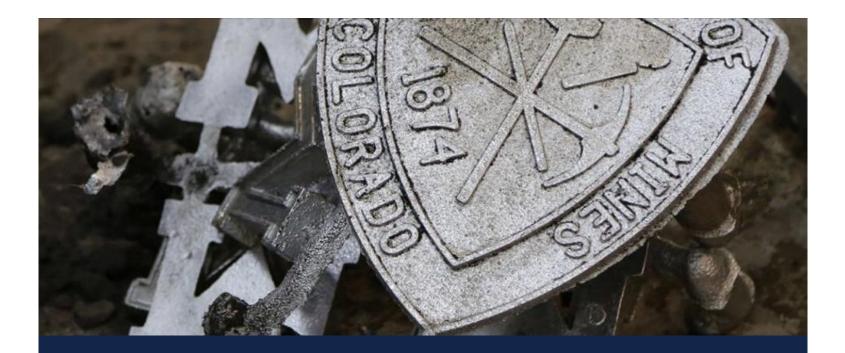



Fig. 3. Mining exploration budget and terrorism impact (Sharland et al., 2017).

Motivation to start CMI

Parting thoughts (1 of 3)


- The minerals markets for most of the critical minerals are not at all transparent. As a result, there are glaring governance issues which need to be addressed. Market development takes decades to develop properly as we can see from those for natural gas and oil. The ERGI initiative from DoS begins to address some of these issues. Still, more needs to be done broader coalitions are needed and multilateralism can play an important role – and a continued focus on equity is essential.
- Related to issues of market design and governance, the lack of price discovery and liquidity in these markets is limiting appropriate investment signals. This seems empirically evident in the investment gaps in, say, lithium. There are additional challenges around market size being relatively small in many cases. Adding complexity is the fact that some of the critical minerals are secondary or tertiary. It is very hard to understand the incentives for those types of product.

Parting thoughts (2 of 3)

- One needs to think about supply chains when considering minerals and metals. Just thinking of rocks and the upstream is limiting. It is also complicated by the fact that there are many different supply chains to keep an eye on in this space. The data and methodologies to track finances or emissions across these chains are hard to find or overly complex.
- The understanding of the security issues of critical minerals is still nascent. The methodologies and metrics are still somewhat simplistic, and too tied to a supply-side focus or flawed notions like independence. They also blur the bounds between energy and security. Think of the market for germanium in space solar panels as an example.

Parting thoughts (3 of 3)

- The balance between domestic security issues and fostering "good" trade is key to designing US policy. That said, the main issue for US foreign policy makers is China. The US can't approach material issues the same way. It's going to be difficult to compete with China's trade agreements, their state-owned enterprises, and their relatively weak labor and environmental standards. They also have a large head start.
- So what can or will the US do under a new administration? In the Congress, one of the highlights of the last four years has been on this topic under the leadership of Senators Murkowski and Manchin in their committee. So the good work underway may in fact continue. Issues from product R&D, to stockpiling, to procurement, to siting, to financial risk mitigation tools, to institutions will all likely be revisited. But recall that policy is largely about prioritization and implementation. Whether this area gets sufficient policy prioritization in the coming years is not at all clear.

The Payne Institute for Public Policy

